
1. Introduction

Let Sd denote the group of polyhedral simple func-
tions on Rd, the additive subgroup of the group of Z-val-
ued functions on Rd which is generated by the indicator
functions of polyhedra. Here we study three ways to
introduce multiplication on Sd, each giving it the struc-
ture of a commutative ring. The purpose of this paper is
to note parallels among these three constructions,
involving identities in the rings and resulting methods
of decomposition of convex polyhedra. These consider-
ations lead immediately to the principle of inclusion-
exclusion, the combinatorial form of Gram’s relation,
Ehrhart polynomials of polytopes, and other useful
notions.

Each of the multiplications we consider arises from a
binary operation on closed convex polyhedra; the three
binary operations are intersection, convex hull of the
union, and Minkowski addition.

For background on convex sets and polyhedra, con-
sult the book by Stoer and Witzgall, [10].

2. The Principle of Inclusion-Exclusion

As the first example, illustrating the basic ideas, we
describe a ring in which multiplication is related to
intersection, and we use the ring structure to derive the
principle of inclusion-exclusion.

If P ⊆ Rd we let [P] denote its indicator function,
[P] : Rd → Z:

The (additive) group of simple functions consists of the
functions F : Rd → Z of the form

where the αi’s are integers and the Pi’s are sets in Rd.
These are the Z-valued functions having finitely many
values. In later sections, we will be interested in the
subgroup of the group of simple functions consisting of
the polyhedral simple functions, the functions having
such a representation, in which the Pi’s are polyhedra.
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Here, a polyhedron is a finite union of sets which are
relative interiors of convex polyhedra. Equivalently, it
is an element of the Boolean lattice generated under
intersection, union, and complementation by the closed
halfspaces. The polyhedral simple functions are those
functions F : Rd → Z having finitely many values and
such that, for each k ∈ Z, the inverse image of k, the set
F–1(k) = {x ∈ Rd : F(x) = k}, is a polyhedron. The group
of polyhedral simple functions on Rd is denoted by Sd.

In this section, the multiplication we describe is
defined on the collection consisting of all the Z-valued
simple functions on Rd; Sd forms a subring.

The operation under consideration in this section is
intersection, ∩. Is there a multiplication, to be denoted
by ·, on the group of simple functions which gives it the
structure of a commutative ring, such that, whenever P
and Q are sets in Rd, we have

[P] · [Q] = [P ∩ Q]?

Of course, the answer is “Yes”; for simple functions
F,G, we take

(F · G)(x) = F(x)G(x),

pointwise multiplication. For F = [P] and G = [Q], we
have F · G = [P ∩ Q].

Furthermore, this multiplication is unique. If

then we must have

then F · G must be the function which, for x ∈ Rd, maps

Now suppose A1, A2, and B are sets in Rd, with B =
A1 ∪ A2. Then

([B] – [A1]) · ([B] – [A2]) = 0,

as is clear, since, for any x ∈ Rd, evaluating the left-
hand side yields ([B](x) – [A1](x))([B](x) – [A2](x)), and

since B = A1 ∪ A2, at least one of the integers [B](x) –
[A1](x) and [B](x) – [A2](x) must be zero. (Here we use
that the function on simple functions which takes F to
F(x)—evaluation at x—is a homomorphism of the ring,
and that the simple function F is zero if and only if, for
each x ∈ Rd, F(x) = 0.) Expanding, we get

0 = [B] · [B] – [B] · [A1] – [A2] · [B] + [A1] · [A2]

= [B] – [A1] – [A2] + [A1 ∩ A2],

or, for each x ∈ Rd,

[B](x) = [A1](x) + [A2](x) – [A1 ∩ A2](x).

This yields the simple counting principle called the
“principle of inclusion-exclusion” in the case of two
sets, A1, A2: If B is finite then summing both sides of the
last equation over all x ∈ Rd (essentially a finite sum,
since finiteness of B ensures that there are only finitely
many x ∈ Rd for which the values are nonzero), we
obtain the cardinality of B in the equation

|B| = |A1| + |A2| – |A1 ∩ A2|.

Similar consequences hold when summing or integrat-
ing other functions over a set B.

More generally, for an arbitrary number n of sets Ai,
letting B = A1 ∪ · · · ∪ An ⊆ Rd, we have

([B] – [A1]) · ([B] – [A2]) · . . . · ([B] – [An]) = 0.

Expanding as before we get an expression for [B] in
terms of the indicator functions of the intersections of
the Ai’s:

3. Convex Hull and Gram’s Relation

In this section, we consider what happens when we
substitute the binary operation of taking the convex hull
of the union for that of intersection (of the preceding
section). Does there exist a multiplication ∨ on the
additive group of polyhedral simple functions, Sd, such
that, for the indicator functions of any nonempty closed
convex polyhedra P and Q, the product is given by the
indicator of their convex hull,

[P] ∨ [Q] = [conv(P ∪ Q)]?
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Indeed there is such a product.
In the preceding section it was not necessary to

restrict the simple functions which were considered, to
be in the group Sd of polyhedral simple functions. In
this section and the next, this restrictive assumption
will be made. We note, however, that we could equally
well make one of two somewhat less restrictive
assumptions; we could assume that the sets F–1(k) lie
either in the Boolean lattice generated by the collection
of open convex sets, or in that generated by the collec-
tion of closed convex sets. The group of polyhedral
simple functions is a subgroup of each of these larger
groups. See [6].

There is a very useful homomorphism χ̄  : Sd → Z.
We briefly describe how to obtain it, using the Euler
characteristic.

The (topological) Euler characteristic χ is defined on
polyhedra by the following properties:

1. χ(0/) = 0;
2. If P is the relative interior of a nonempty convex

polyhedron of dimension k then χ(P) = (–1)k;
3. If P is partitioned into polyhedra Pi (1 ≤ i ≤ m), so

that P = ∪i Pi, and, for i ≠ j, Pi ∩ Pj = 0/ , then
χ(P) = Σiχ(Pi).

Any polyhedron has an Euler characteristic, and if
P,Q ∈ Rd are homeomorphic polyhedra, then χ(P) =
χ(Q).

If P ⊆ Rd is a nonempty open convex polyhedron
then χ(P) = (–1)d, while χ(0/) = 0. These and the fact that
χ has the additivity property, χ(P ∪ Q) + χ(P ∩ Q) =
χ(P) + χ(Q) for any polyhedra P,Q, determine it
uniquely.

See [7] for an easy proof of the existence of the func-
tion χ on polyhedra and its use in establishing Euler’s
relation for the f-vector of a convex polytope. In this
paper we have restricted the discussion to polyhedral
simple functions; however, most of the results hold
more generally for either the group of simple functions
generated by the indicator functions of open convex
sets, or that generated by indicator functions of closed
convex sets. Two useful tools for accomplishing these
extensions may be found in [4]; they are additive func-
tions on the Boolean lattices, namely, the Euler charac-
teristic for the family of open convex sets, which has
value 1 on all nonempty open convex sets, and the
Euler characteristic for the family of closed convex
sets, which has value 1 on all nonempty closed convex
sets (both functions having value 0 on the empty set).
The first of these Euler characteristics, when restricted
to polyhedra, yields the function χ above multiplied by

a factor of (–1)d, while the second yields the function χ′
described below. These functions differ only by a mul-
tiplicative factor of (–1)d when applied to bounded
polyhedra. See also [6], where the relationship between
the two functions is made clear by making use of the
“Sallee-Shephard mapping” which is introduced in that
paper.

If P is a nonempty compact convex polyhedron—a
nonempty convex polytope—then χ(P) = 1, while if P
is a pointed unbounded closed convex polyhedron then
χ(P) = 0. There is a second “Euler characteristic” χ′
characterized by the additivity property, χ′(0/) = 0, and
χ′(P) = 1 for any nonempty closed convex polyhedron
P. For any polyhedron P, χ′(P) may be obtained by tak-
ing χ′(P) = χ(P) + χ(P ∩ ∂(λCd)), for sufficiently large
λ ∈ R, where Cd denotes the cube, Cd = {x = (x1, ...,
xd) ∈ Rd : –1 ≤ xi ≤ 1 for 1 ≤ i ≤ d} and ∂(λCd) repre-
sents the boundary of the dilation by a factor of λ of the
cube. Here we dispense with χ in favor of χ′, as being
better suited to the current needs. It has value 1 on
every nonempty closed convex polyhedron, while
χ′(0/) = 0; and these properties together with additivity
characterize it. However it is not invariant under home-
omorphism.

Given F ∈ Sd and k ∈ Z, the inverse image F–1(k) is
a polyhedron, since F ∈ Sd; and it is empty for all but
finitely many integers k. Therefore, we may define

essentially a finite sum. Note that since the nonempty
sets of the form F–1(k) partition Rd,

Lemma 1 The function χ̄ : Sd → Z is a group homo-
morphism. If P is a nonempty closed convex polyhedron
then χ̄([P]) = 1.

Proof. That χ̄ : Sd → Z is a group homomorphism is
easily verified:

which, since the sets F–1(a) ∩ G–1(b), for fixed a, form
a partition of G–1(b), and for fixed b, form a partition of
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F–1(a), may be continued,

If P is a closed convex polyhedron then, letting F
denote [P], χ̄(F) = χ′(P) = 1, by definition. •

The collection of evaluation mappings, used in the
preceding section (but perhaps “transparently, to the
user”) have simple properties which made them useful
there. For x ∈ Rd, denote by εx the mapping εx : Sd → Z
which maps F F(x), for F ∈ Sd. These functions are
group homomorphisms; they are ring homomorphisms,
when Sd is considered as a ring under intersection mul-
tiplication. Also, if F ∈ Sd is not the zero function, then
there exists an evaluation homomorphism εx such that
εx(F) ≠ 0. Equivalently, if F,G ∈ Sd then F = G if and
only if, for each x ∈ Rd, εx(F) = εx(G). We say that the
evaluation homomorphisms distinguish elements of Sd.
(Some authors would say that the set of evaluation
homomorphisms constitutes a separating set of func-
tions.) Using χ̄ , we construct another collection of
homomorphisms which distinguish elements of Sd.

Given an open halfspace H ⊆ Rd, define

ϕH(F) = χ̄([H] · F) for F ∈ Sd.

If P is a nonempty closed convex polyhedron we have

using

ϕH([P]) = χ̄([H∩P]) = χ̄([(H∪∂H)∩P]) – χ̄([(∂H)∩P]),

which is easy to compute, since the arguments of χ̄  in
the last expression are indicator functions of closed
convex polyhedra (possibly empty).

Lemma 2 The mappings ϕH are group homomor-
phisms. The collection of such mappings, together with
χ̄ , distinguish elements in Sd. If P,Q are nonempty
closed convex polyhedra and H is an open halfspace,
then

ϕH([conv(P ∪ Q)]) = ϕH([P])ϕH([Q]).

Proof. The first and last sentences of the lemma are
immediate from what has just been stated and the prop-

erties of χ̄ . For the middle sentence, we refer the read-
er to Theorem 12 of [6], from which it can be easily
derived. •

In Theorem 1 we see that convex hull of the union
yields a multiplicative structure on Sd.

Theorem 1 There is a unique multiplication ∨ on Sd,
making Sd into a (commutative) ring, such that, when-
ever P and Q are nonempty closed convex polyhedra,
[P] ∨ [Q] = [conv(P ∪ Q)]. The mappings ϕH : Sd → Z
and χ̄ : Sd → Z are ring homomorphisms.

Proof. As in the case of intersection, if such a multipli-
cation exists, it is unique; for if

where the Pi’s and Qj’s are nonempty closed convex
polyhedra, then

We use this as the definition for arbitrary F,G ∈ Sd and
show that it is well-defined. Denote the right-hand side
in this equation by J. We have:

This depends only on F and G, not on their representa-
tions, so, given different representations, resulting in J′
rather than J in the above, the value of ϕH(J′) would be
unchanged: ϕH(J′) = ϕH(F)ϕH(G) = ϕH(J). Replacing ϕH

by χ̄  in the above, we similarly get χ̄(J′) = χ̄(J). From
this and the fact that the homomorphisms ϕH, χ̄  distin-
guish elements of Sd it follows that J′ = J, so that F ∨ G
is well-defined by the above expression.

We have seen that ϕH(F ∨ G) = ϕH(F)ϕH(G), so ϕH is
a ring homomorphism. That χ̄  is also a ring homomor-
phism can be verified similarly without difficulty. •

We use arithmetic in this ring to verify the combina-
torial form of Gram’s relation, in Theorem 2, below.
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Lemma 3 Let P ⊆ Rd be a nonempty convex polytope
and let C1, ..., Cn be the cones emanating from its ver-
tices generated by P. Then

([C1] – [P]) ∨ ([C2] – [P]) ∨ · · · ∨ ([Cn] – [P]) = 0.

Proof. Suppose H is an open halfspace. We consider
the effect of applying ϕH to the left-hand side. P ⊆ H if
and only if there is a vertex of P for which the corre-
sponding cone Cj is contained in H. Therefore, if P ⊄ H
then ϕH([Ci]) = ϕH(P) = 0 for each i; and, otherwise, for
this j we have ϕH([P]) – ϕH([Cj]) = 0. In each case we
have

This holds for each open halfspace H. Also, it is clear
that χ̄ , when applied to the left-hand side, yields 0.
Since the mappings ϕH, χ̄  distinguish elements of Sd,
the stated equality follows. •

Let P be as in the lemma, and suppose that the ver-
tices of P are v1, ..., vn and the cones at the vertices are,
as before, C1, ..., Cn. For each nonempty face F of P, let
CF denote the cone generated by P from F. It is easily
verified that for Λ ⊆ [n], Λ ≠ 0/, conv(∪i∈Λ Ci) = CF,
where F is the smallest face of P containing {vi : i ∈ Λ}.

Theorem 2 (Gram’s relation, combinatorial form.)

Proof. Expanding the expression in the lemma leads
immediately to the equation

For a nonempty face F of P, let ΛF denote the collection
of subsets Λ ⊆ [n] such that the smallest face contain-
ing {vi : i ∈ Λ} is F. The sets ΛF, for F a nonempty face,
form a partition of the set of nonempty subsets of [n].
We then have

The result now follows from the fact that

which can be derived as a consequence of Euler’s rela-
tion for the f-vectors of convex polytopes. •

This theorem can be generalized in a way, by making
use of the notion of the “transversal characteristic” of
[6]. Given a nonempty finite collection C = {P1, ..., Pn}
of closed convex polyhedra, the transversal character-
istic of C is the element of Sd given by

A convex set C is a transversal of C if, for each i ∈
[n], C ∩ Pi ≠ 0/.

Theorem 3 Two finite collections of closed convex
polyhedra have the same convex transversals if and
only if their transversal characteristics are equal.

Proof. Let C = {P1, ..., Pn}, as above. If, for some i,
Pi = 0/, then C has no convex transversals; and in this
case it is easy to see that τ(C) = 0. If no Pi is empty then
certainly convex transversals of C exist; also, in this
case, χ̄(τ(C)) = 1. Therefore the theorem holds when-
ever one of the two collections has 0/ as an element. We
may assume that this is not the case.

It is not difficult to verify that two collections have
the same convex transversals if and only if the set of
closed halfspaces which are transversals are the same
for each.

Let H be an open halfspace. It is clear that

Suppose then that H is an open halfspace whose
complement is a transversal of C. In this case H con-
tains none of the Pi’s, so ϕH(τ(C)) = 0. If, however, the
complement of H is not a transversal of C, letting Γ =
{i ∈ [n] : Pi ⊆ H}, we have

Then the summation reduces to

which has value 1, Γ being nonempty. Summarizing,

transversal
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It follows immediately that collections C and D of
nonempty polytopes have the same transversals if and
only if, for each open halfspace H, the values of ϕH on
their transversal characteristics are equal. Since also
χ̄(C) = χ̄(D) = 1, and the homomorphisms ϕH, χ̄  dis-
tinguish elements of Sd, this happens if and only if their
transversal characteristics are equal. •

Gram’s relation is obtained from Theorem 3 by
applying this theorem to the collection {C1, ..., Cn} of
cones emanating from the vertices of P. This collection
has the same convex transversals as {P}.

We call a family of convex sets clustered if each
transversal is a transversal of the intersection of the
family. In this case, as in Gram’s relation, the transver-
sal characteristic is the indicator function of the inter-
section.

4. Minkowski Addition as the Product

Finally, we consider the existence of and a use for the
multiplication *, for which, if P and Q are nonempty
closed convex polyhedra in Rd, [P] * [Q] = [P + Q].
This ring, studied by Groemer in [3], is called a
“Minkowski ring” in [2] and [5]. The “polytope alge-
bra” studied by McMullen in [8] and used by him to
study the “g-theorem” for simplicial polytopes is a
homomorphic image of a Minkowski ring.

It is necessary to introduce yet another collection of
homomorphisms distinguishing elements of Sd. This
time, the range will also be different. We denote by T
the additive group of expressions which are finite sums
of the form Σiαitρ i, where the ρi’s are real numbers and
the αi’s are integers. Elements of T may be viewed as
functions on the nonnegative real numbers, and then T
forms a ring, with pointwise multiplication as the prod-
uct.

For each linear function λ : Rd → R, we describe a
homomorphism µλ : Sd → T. We define µλ to be the
(unique) homomorphism such that, for each nonempty
closed convex polyhedron P,

Lemma 4 The homomorphism µλ is well-defined by
the above. The homomorphisms of this form distinguish
elements of Sd.

Proof. Note that Z ⊆ T and if the linear functional λ is
identically zero then µλ is χ̄  : Sd → Z ⊆ T.

Suppose λ ≠ 0. Let m be a real number. For any real
number r, let H(r) be the open halfspace H(r) = {x ∈
Rd : λ(x) < r}. For F ∈ Sd, consider

It is easy to see that the limit exists, the function
ϕH(m+ε)(F) being constant for ε > 0 sufficiently small.
Clearly αm : Sd → Z is a group homomorphism.
Furthermore, if P is a closed convex polyhedron, then

It follows that µλ(F) = Σm αm(F)tm for F ∈ Sd, a group
homomorphism.

If H = {x ∈ Rd : λ(x) < m}, we can retrieve ϕΗ(F)
from µλ(F): Letting µλ(F) = Σm′ αm′tm′, we have ϕΗ(F) =
Σ{αm′ : m′ > m}. From this and the fact that the ϕΗ’s and
χ̄  distinguish elements, it follows that the µλ’s do so, as
well.

In Theorem 4 we see that Minkowski addition yields
a multiplicative structure on Sd.

Theorem 4 There is a unique multiplication * on Sd

such that, for closed convex polyhedra P and Q,
[P] * [Q] = [P + Q], making Sd into a commutative ring.
The mappings µλ : Sd → T and χ̄ : Sd → Z are ring
homomorphisms.

Proof. The proof proceeds in a manner similar to that
of Theorem 1. We skip the details, except to note that
for nonempty closed convex polyhedra P and Q and a
linear functional λ, µλ([P + Q]) = µλ([P])µλ([Q]): λ is
bounded above on P + Q if and only if it is bounded
above on P and on Q, in which case, if mP+Q, mP, and mQ

represent the three maximum values, we certainly have
mP+Q = mP + mQ. •

Using the arithmetic of this ring will lead us quickly
to the Ehrhart polynomials.

Lemma 5 Let P ⊆ Rd be a convex polytope having ver-
tices v1, ..., vn. Then, in the Minkowski ring,

([P] – [{v1}]) * ([P] – [{v2}]) * · · · * ([P] – [{vn}]) = 0.

Proof. The proof proceeds in a manner similar to that
of Lemma 3. This time we apply µλ and note that the
maximum of λ on a convex polytope occurs at a ver-
tex. •
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In the following theorem it will be proven that a cer-
tain sequence of complex numbers, s0, s1, s2, ..., is the
sequence of values at the nonnegative integers of a
polynomial. We briefly review the technique to be used
to establish this. Suppose s0, s1, s2, ..., is a sequence of
complex numbers. We denote the sequence by the sym-
bol s*. We form a new sequence ∆s*, by taking differ-
ences of consecutive values: s1 – s0, s2 – s1, s3 – s2, ... . It
is true that s* is the sequence of values of a polynomial
if and only if ∆s* is the sequence of values of a polyno-
mial; and, if s* is not already the sequence of zeroes,
then the degree of the polynomial representing ∆s* is
one less than that representing s* (taking the degree of
the zero polynomial to be –1). Using this “difference”
operator ∆ multiple times, we see that s* is the sequence
of values of a polynomial of degree at most n – 1 if and
only if ∆ns* is the sequence of 0’s. We shall also make
use of the fact that ∆ns* is t0, t1, t2, ..., where

Theorem 5 Let P ⊆ Rd be a convex polytope and let P
denote the subring of Sd generated by [P] and the ele-
ments [{x}], for x ∈ Rd. Suppose γ is a homomorphism
of the abelian groups which maps P to the additive
group of complex numbers. Suppose that, for each ver-
tex v of P and each F ∈ P, γ(F * [v]) = γ(F). Then the
sequence s*, where sk = γ([P]k), is a polynomial of
degree at most d.

Proof. Note that F * [{v}] is the function taking x
F(x – v).

Expanding the left-hand side in the equation of
Lemma 5 and multiplying by [P]j, we obtain

Here the products are of course multiplications in the
Minkowski ring. Applying γ and using the fact that
γ(F) = γ(F * [{vi}]) for any F ∈ Sd and any i, we get

which, upon counting sets, reduces to

then

Comparing this with the expression preceding the state-
ment of the theorem, we see that s* is the sequence of
values of a polynomial of degree at most n – 1.

We observe that the degree is actually no more than
d. From a triangulation of P using simplexes having
only vertices among those of P, [P] can be written as a
sum-and-difference of indicator functions of simplexes.
The sequence s* of the theorem is then the sum-and-dif-
ference of those of the simplexes. Each of these is the
sequence of values of a polynomial of degree at most d,
so the same is true of s*. •

Note that the group homomorphism γ need not be a
ring homomorphism. It is easy to produce homomor-
phisms γ having the property required by the theorem.
Here are two examples.
1. Let Q be a second convex polytope. For F ∈ P, let

where µ is ordinary Lebesgue measure.
2. Assume that the polytope P has only vertices in Zd.

For F ∈ P, let

This is essentially a finite sum, since any element of
P has bounded support.

In the first case, the terms of the sequence s* are the vol-
umes of the polytopes Q + kP, and the coefficients of
the polynomial of the theorem, properly normalized,
are the mixed volumes of P and Q ([3]); in the second,
the terms are the cardinalities of the sets Zd ∩ kP, and
the polynomial is the Ehrhart polynomial of P.

The Minkowski ring Sd has a multiplicative identity
element, [{0}], the function having value 1 at the origin
and 0 elsewhere. The indicator functions of nonempty
polytopes are invertible: [P]–1 = (–1)dim(P)[–Po], where
–Po is the reflection through the origin of the relative
interior Po of P. It is a simple extension of the theorem
to show that the doubly infinite sequence s* having sk =
γ([P]k) for all k ∈ Z is a polynomial. Applied to Ehrhart
polynomials, so that P and γ are as in the second case,
we have that sk = |Zd ∩ kP| for k ≥ 0, and sk =
(–1)dim(P)|Zd ∩ (–k)Po|, when k < 0. That the one polyno-
mial serves both sequences is the reciprocity theorem
studied by Ehrhart in [1], albeit in somewhat greater
generality than is here described, and again by Stanley
in [9].
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